2020年09月

16

ハイブリッド/マルチクラウド時代だからこそIBMのストレージ

IBMの岡田です。

前回の「OpenShiftに代表されるコンテナ環境へのIBMストレージの対応」でも触れた通り、ここ数年の傾向として何でもかんでもクラウドに移行するという時代は過ぎ、従来型の IT インフラとクラウド環境とを上手く使い分け、あるいは連携しながら、目的の業務アプリケーションを動かしていく方向になりつつあります。いわゆるハイブリッドクラウドというものです。
そして、パブリッククラウド自体もそれぞれのサービスにより使い分ける風潮があり、今やパブリッククラウド・ユーザー企業の半分以上が、複数のパブリッククラウドを使っているのではないかと思われます。いわゆるマルチクラウドと呼べるものですね。

しかし、なかなか統合的に管理するというところにまでは至っておらず、クラウドを含めたサイロ化が起こっている状況です。
このような運用ではアプリケーションの適材適所はおろか、データさえ十分に使えていないことは明白です。

今回はこのようなハイブリッド/マルチクラウドの状況の中でデータを上手く連携し活用していくために、IBMのストレージにできるソリューションを紹介しましょう。

 

ハイブリッド/マルチクラウドの位置づけ

以下の図は、ハイブリッドクラウド、マルチクラウドを模式的に表したものです。
オンプレ環境のプライベートクラウドまで含んでマルチクラウドという人もいますし、従来型の物理サーバーや仮想化された VM 環境もハイブリッドクラウドのオンプレミス部分の一部と考える人もいます。人によっても会社によっても捉え方は色々ですが、ここでは敢えて従来型 IT もハイブリッドクラウドの一部として話をしたいと思います。

図1. ハイブリッドクラウドとマルチクラウド

 

IBM Spectrum Virtualize for Public Cloud とは!?

IBM Spectrum Virtualize for Public Cloud(SV4PC)は、第一回目第二回目のブログでも登場した IBM のメインストリームとなるブロックストレージ、FlashSystem にも搭載されている管理機能ソフトウェア、これをパブリッククラウドでも使えるようしたものです。
つまり、SV4PC はハイブリッドクラウドやマルチクラウドに対応したストレージ製品です。

SV4PC を知れば FlashSystem を知ることができますので、SV4PC の機能を紐解いていきましょう。

 

外部仮想化機能

2003年、この Spectrum Virtualize ファミリーの元となる製品が生まれました。SAN Volume Controller、通称 SVC です。
今でもこの製品は最新のテクノロジーを装備してファミリーの一員です。(IBM Spectrum Virtualize for Public Cloud も Spectrum Virtualize ファミリー製品です。)

そこから脈々と受け継がれた外部仮想化という機能は、IBM および他社ストレージ製品約500種類を配下に接続可能で、これを仮想化して自身のストレージとして扱うことができるものです。

図2 外部仮想化機能

もちろん、既存で使われているストレージのボリュームや保存されたデータを生かしたまま配下に収めることができるため、オンライン・データ移行はもちろん、コピーサービス(スナップショット等の機能)を持たないストレージにそういった機能を与える事もできます。

この機能を使う事で、FlashSystem では他社製品を含めた古い製品から簡単に最新のテクノロジーにデータを引っ越すことが可能です。

パブリッククラウド上では、SV4PCがプロバイダーが提供する基本的な機能しか持たないブロックストレージを配下に置くことができます。
これにより、最新のデータ削減機能の他、ブロックレベル自動階層化のEasy Tier(補足参照)、FlashCopyや筐体間コピーを含むコピーサービス(補足参照)、といったテクノロジーも使用可能となるわけです。

 

図3. データ移行のイメージ

 

様々なデータ削減機能

FlashSystem 5010 を除く Spectrum Virtualize ファミリーには、いくつかのデータ削減機能があります。
これらは DRP(Data Reduction Pool)というデータ削減にはなくてはならない機能を実装した Spectrum Virtualize ファミリー特有のストレージプール上で実現されます。また DRP での各処理単位はフラッシュ系デバイスに最適化されています。

図4.Data Reduction Pool

具体的には「リアルタイムデータ圧縮機能」「重複排除機能」「シン・プロビジョニング機能」がサポートされています(一部組合せによりサポートできないデバイスがあります)。
※詳しくは補足をご覧ください。

 

Spectrum Virtualizeファミリーのハイブリッドクラウド/マルチクラウド対応

触れてきた通り IBM の Spectrum Virtualize ファミリーであれば、オンプレミスの FlashSystem あるいは SVC とパブリッククラウド上の SV4PC とでデータ連携できるので、データの観点でハイブリッドクラウド対応ができます。
また、パブリッククラウド同士でデータ連携することもそれぞれに SV4PC を置くことで可能となり、マルチクラウド対応もできます(2020年7月時点、IBM Cloud と AWS に対応)。

図5. ハイブリッド/マルチクラウドのデータ連携

さらにこの方法を使えば、他社の既存データも活かすことができます。外部仮想化機能が使えるからです。

つまり IBM の Spectrum Virtualize ファミリーを使うと、他社ストレージ製品も含めてハイブリッドクラウド対応できる事になります。

では、データをハイブリッド/マルチクラウド連携できると何が嬉しいのでしょうか。

 

ハイブリッドクラウド/マルチクラウドの利点

グローバルでは、一番広く使われているのが災害対策用途です。
被災時に本番環境が使えなくなった際も、パブリッククラウド側で仮想サーバー、コンテナなどを使い業務を継続できるからです。

今求められるデータ活用としては AI/アナリティクスなどと言うものもあります。
オンプレミスで使えるものもありますが、手軽にやろうとすると各パブリッククラウド上で提供している AI サービスを使うのが早いですね。最初に触れた通りサイロ化されたデータをパブリッククラウドと連携するにもハイブリッドクラウドは有効です。

バックアップ先としてパブリッククラウドを使うと、いらぬ投資をすることなく遠隔保管が可能となります。
通常テープを使った遠隔保管ですと保管場所である拠点、定期的な搬送といった固定費が発生します。最悪の場合、本番業務側が被災した場合にもデータをリストアしなければならないことを考えると、保管場所にリストアする仕組みが必要となります。これも大きな投資となるでしょう。
パブリッククラウドをバックアップ先とした場合それだけで遠隔保管が実現でき、必要な場合のみ仮想サーバーも立てることができるため DR としての役割も果たせるのです。

また、クラウドに業務を移行するというケースもまだまだ発生しますね。
この際クラウドプロバイダーが提供している方法もありますが、移行対象となるデータが多量にあると、なかなか与えられた方法を用いて計画通りに移行することは困難な場合があります。特にプロバイダーから送られたハードウェアを仲介して行う方法は、移行の間は業務を止めて対応する必要があります。これではビジネス的なインパクトが発生します。
ハイブリッドクラウド形態でのクラウド・オンプレミス間のデータ同期であれば業務を止めずに対応でき、万が一クラウドに移行したことで何らかの不具合を生じた場合にも即座に元の環境に戻すことができます。

これらの有益なハイブリッドクラウドのデータ連携にマルチクラウドのデータ連携要素が加わると、更に有益なことがあります。
最近の風潮としては、パブリッククラウド上にデータを置く場合でもミッションクリティカルなものの場合には、AZ(アベイラビリティーゾーン)を跨ってレプリケーションを取ることが一般的になってきています。冗長性を保つという意味では、異なるパブリッククラウドにコピーを持つことも有効でしょう。
このような用途にもマルチクラウド・データ連携は役に立ちます。

またメジャーなパブリッククラウドは、基本的にグローバル展開をしております。
自身で海外にサイトを立ち上げる必要なく、容易に海外展開できるといった利点や、国内でも東阪の災対環境も手軽に築くことも可能です。

図6. ハイブリッド/マルチクラウドで実現できるソリューション

 

ハイブリッドクラウド・データ連携の具体例:クラウドへのデータ移行

パブリッククラウドに業務を移行する際に、ハイブリッドクラウドの接続形態を使うことで既存の業務を止めないオンラインデータ移行が可能です。(ただし既存ストレージの仮想化のための接続変更時は短時間ですが止める必要があります。)

図7. ハイブリッドクラウド活用例・クラウドへのデータ移行

オンプレミスとパブリッククラウド、あるいはパブリッククラウド同士でのレプリケーションは方向を変えることも可能ですので、もししばらく使ってみて移行先で業務がうまくいかないなどの不具合が生じた場合は、データをオンプレミス側に戻すことも可能です。

他の活用例も結局はこのレプリケーションを使って双方を連携させることによりますので、アイディア次第でお客様の用途に合わせて色々な活用方法が見つかるかもしれません。

 

クラウド上ではこんな使い方も

SV4PC だけでも面白い使い方ができます。

多くのパブリッククラウドの環境下では、その環境内で使える仮想ブロックストレージが用意されています。
プロバイダーにもよりますが、大雑把に言ってしまえばクラウドは大規模な物理リソースを小出しにして使っている都合上、様々な制約があったり、性能の低いリソースを使わないとコストがかかりすぎるなど難しい局面も持っています。

例えば一つの仮想ブロックストレージの上限容量です。あるプロバイダーでは 16TB までしか使えなかったり、IOPS の上限にひっかかったりします。
このように、デフォルトのままではパフォーマンス要件をこなせないような場合でも、SV4PC で仮想ブロックストレージを複数束ねることで、仮想サーバー側に提供するストレージをスケールアウトすることができるので解決できたりもします。

また、データがホットな時期は SSD、旬が過ぎると HDD レベルで充分なデータを扱う場合、そもそも一時的なパフォーマンスのために全データを同じ SSD に置いておくのは無駄があります。
このような場合、最小限必要な SSD と充分な HDD を SV4PC で束ねつつ、前述の Easy Tier のような自動階層化機能を使うと、意識することなくホットデータは SSD で処理、その後は HDD へ配置されるので、クラウド上のストレージコストを全体的に減らすことができたりもします。

さらに、SV4PC のシン・プロビジョニング機能を使えば効率の良いコスト削減が可能となります。
通常の場合、仮想ブロックストレージの払い出しは見込み容量を先に決めてからその分払い出すことになり、運用後の拡張の手間を考えると、あらかじめ余裕を持った容量を払い出しがちです。この場合、実際に使用していなくとも払い出した容量は課金対象となります。
これに対しシン・プロビジョニングは、実際に存在する容量以上のストレージ空間を切り出すことができるのと、後から不足しそうな容量分の仮想ブロックストレージをストレージプールに加えることもできるので、最小限の容量から始めることができ、容量課金を削減することができます。

図8. パブリッククラウド上でのSV4PCの活用

なお何度も言いますが、SV4PC は今後のコンテナ環境にも対応しております。
ここまで見てきた通り、SV4PC はクラウド全盛の今だからこその機能を備えた Software Define Storage ソリューションであることが分かると思います。

いかがでしたか?

ハードウェアはもちろん技術の塊ですが、ソフトウェアのみでも十分に使える IBM Spectrum Virtualize ファミリー、少しは興味を持っていただけたのではないでしょうか?

次回は「最新のデータのライフサイクル管理」ということで ESS、Sepctrum Scale、オブジェクトストレージ、そして Spectrum Discover といった製品に触れてみたいと思います。

乞うご期待!

 

補足

1)リアルタイムデータ圧縮

バッチ処理で圧縮するのではなく、データの書き込み時に圧縮処理をして記憶域に書き込む圧縮方法です。FlashSystem 5030 と SV4PC を除きハードウェア・アクセラレータを活用できます。
もちろん 5030 および SV4PC もコントローラのリソースのみの処理ですが暗号化機能を実現しています。
圧縮率は、対象となるデータの種類によって異なりますが、一般にデータベース、メール、仮想サーバーイメージなどのファイルが高いと言われています。
以前はオフィスデータなども高かったのですが、最近はすでにオリジナルのオフィスファイル自体で圧縮済みですので、あまり効果は期待できなくなっていると言われます。

更に DRP の機能とは別に、IBM 特有の FlashCore モジュール(略して FCM。FlashSystem 5100, 7200, 9200/R で使用可能)であれば、モジュールそのものにインライン・ハードウェア圧縮機能があります。これはモジュール内のハードウェア的なデータの通り道にワイヤードロジックによる圧縮機能を設けているため、性能に影響を与えません。
ちなみにこのワイヤードロジックには暗号化機能も盛り込まれており、同様に性能に影響のない暗号化を実現しています。

 

2)重複排除

データのなかに同じパターンを見つけて、冗長なデータを削減することで容量を節約する機能です。特に仮想サーバーイメージなどには有効な手法です。
以前は非常に負荷がかかる作業だったため、バックアップなどに限定して使われていた技術ですが、昨今は性能の向上により、通常のストレージでも当たり前に使われる技術となりました。
以下は非常に単純化したインラインで扱われる重複排除のイメージです。バックアップ等での処理はこの限りではありません。

図9. 重複排除

実際はこう単純ではありません。
書かれたデータのパターンに応じたフィンガープリントと呼ばれる代替え値をハッシュ関数により導き、新たに書かれるデータのハッシュ値がすでに存在するフィンガープリントと一致している場合は、データそのものは書き込まず、参照するフィンガープリントのポインターのみを管理テーブルに記録する。これによりデータを間引くことができ、書き込み容量を削減することができるのです。

DRP 上での重複排除の特徴はフィンガープリントを同一ボリューム内のみならず、同じ DRP で定義された別のボリュームも含めて参照していることです(※図4参照)。同じプール内でバックアップなどのボリュームが定義された場合などに効果を発揮できるからです。

図4.Data Reduction Pool

 

3)シン・プロビジョニング

こちらは、データ削減と言うよりはサーバーから見た際の話になります。
通常、ストレージ装置側で定義したボリュームをそのまま OS で認識させ使用することになります。その際の容量は、ストレージ装置のボリューム定義そのままの容量となります。

図10. シン・プロビジョニング

シン・プロビジョニングを使うと、その容量定義を物理的に存在しない容量も上乗せして定義することができます。この場合消費されるストレージ装置の容量は実際に書き込みが起こった時にそのデータ容量分ずつとなります。
もちろんその存在しない容量分に書き込みが発生するとエラーになりますので、そうなる前に物理容量を追加する必要があります。同じストレージプール内の複数のボリュームで、実際に存在する実効容量を共有して消費するといった使い方が効果的です。が、OS 側からは何も意識することがありません。

この方法は、実はパブリッククラウドのように払い出し容量で月額課金されるようなサービスでは、より有効な節約方法となります。

 

4)Easy Tier

Spectrum Virtualize ファミリーには、もう一つ特徴的な機能として自動階層化機能があります。
通常データの階層管理というと、ファイルレベルで実装するものをイメージされる方が多いのではないでしょうか?

Easy Tier はブロックレベルでありながらストレージの負荷情報を自ら学習し、アクセスの集中するホットなデータは Flash系のデバイス、アクセス頻度の低いデータは容量単価に優れる大容量・低速の HDD といった階層にデータを AI を使ってストレージの機能で動的に移動させる機能です。

図11. EasyTierの動作イメージ

この機能を使うと高価な半導体系のストレージデバイスの容量を節約し、安価なハードディスクを増やすことで、パフォーマンスを下げずに全体の容量単価を下げることができます。
オンプレミスの FlashSystem はもちろん、払い出し容量で月額課金されるパブリッククラウドでも有効な節約手段となります。

 

5)コピーサービス

今や多くの廉価なストレージ装置もスナップショット、レプリケーションといった機能は当たり前になっています。

図12. 様々な用途に使えるコピーサービスの数々

スナップショットなどの瞬間のボリュームイメージを切り取る機能は、一般的にポイント・イン・タイム・コピーと呼び、IBM の場合は FlashCopy と言われる機能になります。
こちらは通常ストレージ装置内で使われる機能です。バックアップを取るときなどアプリケーションや RDB などと連携して、静止点をとるのに有効な機能です。

これに対して、ストレージ装置間で関連づけたボリューム同士で同期を取り、それぞれのボリュームを常に同じデータで満たす方法がレプリケーションです。
スナップミラー、ボリュームミラー、リモート・ミラーあるいはリモート・コピーなど、メーカーによって呼び方は様々ですが、基本的には時間的ズレのない同期型のものと、多少の時間的ズレを容認する非同期のものとに大別されます。
前者は銀行など災害などでのデータ損失を認めないような要件で使われ、拠点を跨ぐ場合、それなりの高価な設備(ネットワーク設備であったり拠点設備であったり)と共に使われます。後者はデータの多少の損失は容認するか、または別の方法(ログデータとかとの併用など)で補うかして、むしろ、より遠隔にデータを退避することを優先するなどの目的で使われます。広域災害などへの対策が多いですね。

考慮すべき事項に、特にレプリケーションは同じストレージ装置同士であると言う大前提があります。メーカーごとに使っている技術が異なるからです。
IBM の場合、Spectrum Virtualize ファミリーであれば相互接続が可能です。つまりオンプレミスのFlashSystem または SVC とパブリッククラウド上の SV4PC との接続が可能なのです。これが IBM ストレージがハイブリットクラウドに対応できると言う一つの根拠です。
もちろん前回触れた通り CSI(Container Storage Interface)にも対応していますので、コンテナ環境にも対応可能です。

接続方法について以前は、ストレージ機器同士の同期ということでより早く安全な FCP(Fibre Channel Protocol)に頼っていましたが、今日では非同期を前提に充分に IP 接続でも対応できるようになりました。
また、帯域以上のデータ転送を余儀無くされる初期同期が問題になりますが、前述のシン・プロビジョニング・ボリュームを対象とすることでボリューム全転送を必要とせず差分だけで可能となったり、データそのものも効率的な圧縮・重複排除の活用で小さくなったというのも大きいですね。

 

 


この記事に関するお問い合わせ

エヌアイシー・パートナーズ株式会社
企画本部 事業企画部

この記事に関するお問い合せは以下のボタンよりお願いいたします。

 


関連ページ

 

 

その他の記事

2025年08月04日

【てくさぽBLOG】IBM watsonx OrchestrateのADKを使ってみた

こんにちは。 てくさぽBLOGメンバーの高村です。 早速ですが、今年5月に開催されたIBMの年次イベント「Think2025」で、watsonx Orchestrateの新機能が発表されました!その中の一つとして、開発者向けの「Agent Development Kit(以下、ADK)」があります。今回はこのADKを活用し、watsonx Orchestrate環境への接続やエージェントの追加といった操作を行い、その使用感をご紹介します。  なお、watsonx Orchestrateについては、今年2月、3月に公開した「watsonx OrchestrateやってみたBLOG」でご紹介しておりますので、是非こちらもご一読ください。 【てくさぽBLOG】IBM watsonx Orchestrateを使ってみた(Part1) 【てくさぽBLOG】IBM watsonx Orchestrateを使ってみた(Part2) 目次 はじめに ADKとは? ADK使ってみた さいごに お問い合わせ はじめに Think2025で発表された新機能は、6月に環境へ追加されました。それ以前の環境とは、メニュー構成や操作方法、機能名称に変更があります。 例えばこれまで「Skill」と呼ばれていたものが「Tool」へと名称変更されています。 アップデート後の環境につきましては、別ブログにて改めて詳しくご紹介させていただく予定ですので、ぜひご期待ください! ADKとは? まずはADKについてご紹介します。ADKとは開発者向けにwatsonx OrchestrateのAgentやToolをスクラッチ開発するための開発キットになります。ローカル端末などに導入し、pythonベースで開発を行うことができます。 また、ADKとは別に、watsonx Orchestrate Developer Editionをローカル端末に導入することで、ADKで開発したAgentやToolのテストが可能になります。なお、watsonx Orchestrate Developer EditionはDockerコンテナ上で動作し、現時点のハードウェア要件はCPUは最小8コア、メモリは最小16GBが必要です。詳細はInstalling the watsonx Orchestrate Developer Editionをご確認ください。   ADKとwatsonx Orchestrate Developer Editionを利用することで、コードの迅速な作成・修正や柔軟なカスタマイズに加え、環境へのデプロイ前にローカルでテスト・修正が可能となり、作業効率の向上が期待できます。 ADK使ってみた 前述ではADKでAgent開発し、watsonx Orchestrate Developer Editionで動作確認、SaaS watsonx Orchestrateへインポートする構築の流れをお話しましたが、今回の検証における動作確認は検証環境として利用しているIBM Cloud 上のwatsonx Orchestrate利用します。よって前述したwatsonx Orchestrate Developer Editionは利用せず、ADKからwatsonx Orchestrate検証環境へAgentとToolを直接インポートし、動作確認を行いたいと思います。また、ADKのインストール先は自分の端末ではなく、IBM Cloud上に構築したUbuntuのVirtual Server Instance(以下、VSI)を使用します。検証環境の構成イメージは下記の図の通りです。 尚、ADKのインストール要件はPython 3.11以上、Pip、そして仮想環境(以下venv)が必要です。詳細については、Getting started with the ADKをご確認ください。 それでは早速使ってみましょう! VSIのプロビジョニング まずはADKをインストールするVSIをプロビジョニングします。本ブログではプロビジョニング方法について詳しく記載いたしませんが、手順は「【てくさぽBLOG】IBM Power Virtual ServerのAIX環境とIBM Cloud Object Storageを接続してみた(Part1)」のVSI for VPCの作成をご参考ください。 OSはUbuntu 22.04 LTS Jammy Jellyfish Minimal Install、リソースは2vCPU,4GB RAMで作成しました。VSI作成時にSSH鍵が必要なるので作成を忘れないようにしてください。 作成すると数分で起動します。端末からSSHログインするため浮動IPが必要になります。赤枠で囲った浮動IPを作成しインスタンスに紐づけします。以上でVSIの作成は完了です。 Ubuntuの設定 ターミナルを開きsshでUbuntuにログインします。私はWindowsのコマンドプロンプトを使用しました。Ubuntuユーザでログイン後、rootパスワードを設定し、スイッチできるようにします。 ubuntu@nicptestvsi:~$ sudo passwd root New password: Retype new password: passwd: password updated successfully ubuntu@nicptestvsi:~$ su - pythonのバージョンを確認したところ3.10.12でした。ADKの要件は3.11以上ですので、バージョンアップが必要になります。最初は3.13にバージョンアップしてみたのですが、後続作業と最新バージョンではパッケージが合わなかったのかうまく動かず…仕切り直して3.11を利用することにしました! root@nicptestvsi:~# apt install python3.11 バージョンアップ後、デフォルトバージョンとして3.11を指定します。 root@nicptestvsi:~# sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.10 1 sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.11 2 sudo update-alternatives --config python3 update-alternatives: using /usr/bin/python3.10 to provide /usr/bin/python3 (python3) in auto mode update-alternatives: using /usr/bin/python3.11 to provide /usr/bin/python3 (python3) in auto mode There are 2 choices for the alternative python3 (providing /usr/bin/python3).Selection Path Priority Status ------------------------------------------------------------ * 0 /usr/bin/python3.11 2 auto mode 1 /usr/bin/python3.10 1 manual mode 2 /usr/bin/python3.11 2 manual modePress <enter> to keep the current choice[*], or type selection number: 2 root@nicptestvsi:~# root@nicptestvsi:~# python3 --version Python 3.11.13 次に下記コマンドを実行して任意のvenvを作成します。 python3 -m venv /path/to/nicpse/project/your-venv-adktest <環境のパスを指定 venvを活性化してログインします。下記コマンド結果のようにvenvに入れましたらUbuntuの設定は完了です。 root@nicptestvsi:~# source /path/to/nicpse/project/your-venv-adktest/bin/activate (your-venv-adktest) root@nicptestvsi:~# ADKのインストール 以下コマンドを実行してADKをインストールします。ADKは6月時点で1.5.1が最新バージョンです。 (your-venv-adktest) root@nicptestvsi:~# pip install ibm-watsonx-orchestrate Collecting ibm-watsonx-orchestrate Downloading ibm_watsonx_orchestrate-1.5.1-py3-none-any.whl.metadata (1.4 kB) Collecting certifi>=2024.8.30 (from ibm-watsonx-orchestrate) Downloading certifi-2025.6.15-py3-none-any.whl.metadata (2.4 kB) Collecting click<8.2.0,>=8.0.0 (from ibm-watsonx-orchestrate) Downloading click-8.1.8-py3-none-any.whl.metadata (2.3 kB) Collecting docstring-parser<1.0,>=0.16 (from ibm-watsonx-orchestrate) Downloading docstring_parser-0.16-py3-none-any.whl.metadata (3.0 kB) Collecting httpx<1.0.0,>=0.28.1 (from ibm-watsonx-orchestrate) Downloading httpx-0.28.1-py3-none-any.whl.metadata (7.1 kB) ----中略---- (your-venv-adktest) root@nicptestvsi:~# orchestrate --version ADK Version: 1.5.1 ADKの環境設定 次にADKの環境設定を行います。watsonx OrchestrateのインスタンスIDが必要になるため、watsonx OrchestrateのSetting画面に入り確認します。下記画面をご参考にしてください。 環境設定コマンドはこちらになります。-nの後はvenv名を指定し、-uの後はインスタンスIDを指定します。 (your-venv-adktest) root@nicptestvsi:~# orchestrate env add -n <仮想環境名> -u <環境のインスタンスID> [INFO] - Environment 'my-name' has been created [INFO] - Existing environment with name 'nicpse' found. Would you like to update the environment 'nicpse'? (Y/n)y [INFO] - Environment 'nicpse' has been created 以下コマンドを実行して、IBM Cloud上のwatsonx Orchestrateと認証設定をします。APIキーの取得方法は「【てくさぽBLOG】IBM watsonx.aiを使ってみた(Part2)」のAPIキーの取得をご確認ください。尚、リモート環境に対する認証は2時間ごとに期限切れになります。期限が切れた場合は再度認証する必要があります。 (your-venv-adktest) root@nicptestvsi:~# orchestrate env activate nicpse --apikey <APIキー> [INFO] - Environment 'my-ibmcloud-saas-account' is now active [INFO] - Environment 'nicpse' is now active 下記コマンドを実行してCLIから利用できる環境のリストを表示します。IBM Cloud上のwatsonx Orchestrateがactiveとなっていました! (your-venv-adktest) root@nicptestvsi:~# orchestrate env list nicpse https://api.us-south.watson-orchestrate.cloud.ibm.com/instances/XXXXXXXX (active) local http://localhost:XXXX Toolとagentのインポート 次にToolとAgentのインポートを行います。ToolとはAgentがタスクを実行する際に利用する機能です。今回は、IBM様より共有いただいたyfinanceを活用したToolおよびAgentのコードを、ADKを用いてインポートします。なお、yfinanceはヤフーファイナンスから株価などの金融データを取得するためのPythonライブラリです。 最初にToolのインポートを行います。下記の様に、scpなどでToolファイルとrequirements.txtをディレクトリにアップロードしておきます。requirementsファイルは他のモジュールと依存関係がある場合使用します。 (your-venv-adktest) root@nicptestvsi:~/orchestrate_tool/py/source_02# ls -l total 12 -rw-r--r-- 1 root root 0 Jun 24 04:42 __init__.py drwxr-xr-x 2 root root 4096 Jun 24 04:38 __pycache__ -rw-rw-r-- 1 ubuntu ubuntu 8 Jun 24 03:02 requirements.txt -rw-rw-r-- 1 ubuntu ubuntu 1778 Jun 24 02:46 yfinance_agent.py 下記コマンドを実行してToolファイルとrequirementsファイルをインポートします。企業情報を取得するstock_infoと株価を取得するstock_quoteの2つのToolがインポートされました。 (your-venv-adktest) root@nicptestvsi:~/orchestrate_tool/py/source_02# orchestrate tools import -k python -f "./yfinance_agent.py" -r "./requirements.txt" [INFO] - Using requirement file: "./requirements.txt" [INFO] - Tool 'stock_info' imported successfully [INFO] - Tool 'stock_quote' imported successfully listコマンドを実行するとインポートされたToolを確認できます。 (your-venv-adktest) root@nicptestvsi:# orchestrate tools list ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━┳ ┃ Name ┃ Description ┃ Permission ┃ Type ┃ Toolkit ┃ App ID ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━╇ │───────────┼────────────┼── │ send_mail_brevo │ send a meil using Brevo. │ write_only │ python │ │ │ │ │ │ │ │ │ │ ├─────────────────────────────────┼──── │ stock_quote │ 企業のTickerSymbolを用いて株価… │ read_only │ python │ │ │ ├─────────────────────────────────┼──── │ Untitled_6160RC │ No description │ read_only │ openapi │ │ │ ├─────────────────────────────────┼──── │ stock_info │ 企業のTickerSymbolを用いて企業… │ read_only │ python │ │ │ └─────────────────────────────────┴──── 次にAgentをインポートします。下記コマンドを実行します。 (your-venv-adktest) root@nicptestvsi:~/orchestrate_tool/py/source_02# orchestrate agents import -f ./yfinance_agent.yaml agent listコマンドでインポート済みのAgentを確認できました。Agentが使用するToolも表示されています。 (your-venv-adktest) # orchestrate agents list ┏━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┳━━━━━━━━ ┃ Name ┃ Description ┃ LLM ┃ Style ┃ Collaborators ┃ Tools ┃ Knowledge Base ┃  ┡━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━╇━━━━━━━━ │ yfinance_age… │ 企業の会社情… │ watsonx/meta- │ react │ │ stock_info, │ │ │ │ │ llama/llama-3 │ │ │ stock_quote │ │ ││ │ │ -2-90b-vision ││ │ -instruct │ │  IBM Cloud上のwatsonx Orchestrateで動作確認 インポートしたAgentとToolをIBM Cloud上のwatsonx Orchestrateで確認します。 watsonx Orchestrateへログインし、BuildからAgent Builderを選択します。 yfinanceエージェントが表示されているので、クリックします。 クリックすると、Agent作成画面に入ります。UIから基盤モデルを変更したり、Agentの振る舞いなど変更することができます。 スクロールして、Toolsetを確認するとADKからインポートしたToolが登録されています。 右のPreviewからAgentの動きを確認することができます。今回はDeployせずPreviewで確認します。入力欄には「IBMの株価は?」と質問してみます。しばらくすると本日の株価が回答されました。Show Reasoningを開くと推論過程を確認することができます。株価を取得するTool「stock_quote」を使用し、AIがユーザの入力から自動的にTicker symbolを入力していることがわかります。 次に「IBMの企業情報」と質問をします。しばらくするとAIがユーザの入力からTicker symbolを入力し、Tool「stock_info」を利用して企業情報を取得、回答されました。ユーザの入力内容からAgentが使用するToolを選択し、実行していることがわかります。   さいごに ADKのご紹介とADKを使ってToolとAgentのインポートを行いました。 ADKのインストールおよび設定について、Pythonバージョンの設定やvenvの作成でつまずく部分はありましたが、venvが作成できればその後の設定はスムーズに進められました。 今回はVSI上のUbuntuサーバにADKをインストールしましたが、ご自身の端末に導入することで、より気軽にAgent開発を行えるかと思います。なお、今回は検証対象外でしたが、watsonx Orchestrate Developer Editionを利用する場合は、インストール要件としてやや高めのスペックが必要になる点にご注意ください。 検証時のADKのバージョンは1.5.1でしたが、7月末では1.8.0が最新バージョンとなっています。比較的頻繁にアップデートされますので適宜Release Notesをご確認ください。バージョンアップでコマンドオプションも変更される場合があるため、マニュアルを確認するかコマンドに`--help`を付与してパラメータを確認することをおすすめします。   お問い合わせ この記事に関するご質問は以下の宛先までご連絡ください。 エヌアイシー・パートナーズ株式会社 技術企画本部 E-mail:nicp_support@NIandC.co.jp   .anchor{ display: block; margin-top:-20px; padding-top:40px; }

2025年07月11日

【参加レポート】Domino Hub 2025

公開日:2025-07-11 みなさまこんにちは。ソリューション企画部 松田です。 2025年6月19日・20日と2日間に渡って開催された「Domino Hub 2025」に参加しました。これは HCL Ambassador有志が企画・実行する Dominoコミュニティイベントです。去年に続き、今回が3回目の開催となります。 昨年同様、今回もエヌアイシー・パートナーズはスポンサーとしてご支援させていただき、両日参加いたしました。そのレポートをお送りします。 目次 イベント概要 セッション内容 - Domino 14.5 リリース 特徴的機能とライセンス改定 -ロードマップ -お客様事例:曽根田工業様 最後に 関連情報 お問い合わせ イベント概要 「Domino Hub」は、HCL Ambassadorが主宰となり、Dominoの利用者、開発者、ソリューションベンダーが一堂に会するコミュニティイベントです。今回は1日目がオンライン、2日目はオンサイトのみの開催でした。 特に2日目は参加率が非常に高かったとのことで、会場も大変盛況でした。結婚式場としても使われている今回の会場は、中庭から陽の光が差し込み、解放感があるラグジュアリーな空間で、一般的なビジネスミーティングよりも上質な雰囲気が感じられました。 併せて展示ブースも設置され、Dominoアプリケーションがスマートフォンやブラウザで使えるようになる「HCL Nomad」などのHCL製品とともに、様々なビジネスパートナー様の多彩な関連製品が数多く展示・紹介されていました。 セッション内容 2日間で全22セッションが行われました。セッションはHCLをはじめ、HCL Ambassadorから、様々な開発ベンダー、製品ベンダー、エンドユーザーからの事例紹介などのセッション、そしてパネルディスカッションがありました。まずHCLからのセッション内でのトピックをお伝えします。機能のみならずライセンスまわりで大きなニュースもありました。 Domino 14.5 リリース 特徴的機能とライセンス改定 Domino Hubの2日前、2025年6月17日にリリースされました。 Domino IQ 特徴的な機能で最も注目すべき、今回もご説明に時間を割かれていたのが「Domino IQ」です。 一言で言えば「Domino内にローカルでLLMを持たせ、蓄積されてきたDominoアプリ内の情報も取り込み、セキュアな環境で生成AIを用いた業務を実現する」ものです。 企業内業務で生成AIをどのように実装し利用していくかは今、皆様の大きな関心事項であられると思います。自社のDomino環境内で、Dominoアプリケーションを用い、Notesクライアントからそれが実現できることになります。 (画像クリックで拡大) Nomad for Web COM対応 またNomad for WebがCOMに対応したことにより、これまではNotesクライアントだけでしかできなかったExcelやPowerPointを埋め込んだDiminoアプリもブラウザから利用できるようになりました。 ライセンスダッシュボード:DLAUの統合 これまでGitHubからダウンロードしてセットアップしていたDomino License Analysis Utility (DLAU)がDomino内にデフォルトで統合され、The Domino License Administration (DLA) となりました。 (画像クリックで拡大) ライセンス改定 そしてライセンスにも大きなベネフィットが付加されました。CCB Termライセンスにはこれまで「Domino Leapで5アプリケーションまで開発・利用が可能」という権利が含まれていましたが、2025年7月1日からその制限がなくなりました。すなわち「2025年7月1日以後有効なCCB Termライセンスをお持ちのお客様は、Domino Leapのフル機能が利用できる」となります。 同時に、Domino Leapライセンスの利用範囲であるHCL Enterprise Integrator(HEI)の利用権利も含まれます。これでCCB Termライセンスのみで、追加費用なく「ブラウザによるノーコード/ローコード開発」「基幹業務とDominoアプリケーションの連携」が可能になります。 さらにCCB Termで利用できるSametime Chatで添付ファイルと画像添付も可能になりました。 ロードマップ Domino、Notes、Verse、Nomadなど各ソリューションについてのロードマップも紹介されました。先々の計画は出てこないものですが、このようにHCLから明確に提示されることにより、Dominoをお使いのお客様はこれからも安心して利用を継続していただけると思います。 Dominoのロードマップ(画像クリックで拡大) Notesのロードマップ(画像クリックで拡大) Nomad, VerseといったエンドユーザーのUI部分が短期間でバージョンアップされていく。(画像クリックで拡大) お客様事例:曽根田工業 様 Dominoユーザーの有限会社曽根田工業 代表取締役 曽根田 直樹 様より、Domino事例のご講演がありました。曽根田様は2001年に静岡県磐田市で個人で起業され、切削機械の刃物を製造されています。曽根田様のお話で非常に興味深かった部分を抜粋致します。 "独立・起業するにあたり、前職で使っていたNotes/Dominoを自社でも使うことにした。現在は大手メーカーからの発注依頼や過去に作った品番の再発注など数多く受けており、当時のCAD/CAMのデータや販売管理データなどをDominoに入れて運用している。 オンプレミス環境のリスクやセキュリティ、IT技術のトレンドに合わせてクラウド化を検討した場合、Dominoからは離れたほうがいいのではないか?と思い、他社SaaS製品も検討しトライアルで利用登録をした。 しばらく触れずにいたところ、アカウント情報に登録していた支払い口座から利用料の引き落としがされていなかったためアカウントが凍結、さらに保存していたデータも突然消去されてしまっていた。支払いが滞っただけで中身まで削除されてしまうようなシステムには会社の大事な資産であるデータを載せられないので、「Dominoを『やめることを止める』判断」をした。" Dominoから他製品への移行を検討され断念されるお客様は多く、その理由は「Dominoの業務アプリケーションを、サービス内容を落とさずに別プラットフォームに移行することがはなはだ困難である」ということをよくお聞きしますが、この点にも意外な理由が潜んでいました。 最後に 初の2年連続開催となった今年のDominoHubは、コミュニティの力を象徴するかのような盛り上がりを見せました。14.5のリリース、生成AIの実装、ライセンス強化など、今後のDominoの発展を確信させる要素が数多く披露されたほか、実際のユーザー事例も非常に示唆に富むものでした。加えてロードマップの提示による未来への安心感も得られました。 DominoHubは単なる情報共有の場に留まらず、技術、コミュニティ、そしてビジネスの未来を交差させる特別な場となっています。これからもこのような取り組みが継続していき、多くのDominoユーザー、デベロッパー、そして販売パートナーが更なる価値を引き出していけることを楽しみにしています。これからもDominoと私たちの未来を築いていきましょう。 関連情報 「Domino Hub」大阪開催 Domino Hubは、2025年9月18日に大阪でのオンサイト開催が決定致しました。詳細およびお申し込みについては、こちらのリンクからご確認ください。 お問い合わせ エヌアイシー・パートナーズ株式会社E-mail:voice_partners@niandc.co.jp   .highlighter { background: linear-gradient(transparent 50%, #ffff52 90% 90%, transparent 90%); } .anchor{ display: block; margin-top:-20px; padding-top:40px; } .btn_A{ height:30px; } .btn_A a{ display:block; width:100%; height:100%; text-decoration: none; background:#eb6100; text-align:center; border:1px solid #FFFFFF; color:#FFFFFF; font-size:16px; border-radius:50px; -webkit-border-radius:50px; -moz-border-radius:50px; box-shadow:0px 0px 0px 4px #eb6100; transition: all 0.5s ease; } .btn_A a:hover{ background:#f56500; color:#999999; margin-left:0px; margin-top:0px; box-shadow:0px 0px 0px 4px #f56500; } .bigger { font-size: larger; } figcaption { color: #7c7f78; font-size: smaller; }

back to top